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ABSTRACT
We demonstrate that unit errors of measurement will lead to significant biases in estimating the
constant elasticity of substitution (CES) function. Monte-Carlo simulations show that estimation
results tend to reach Cobb–Douglas (CD) functions or extreme values if units of input variables are
incorrectly used. To avoid this problem, we suggest adding an overall efficiency parameter and
a unit correction parameter which is similar to biased technological change parameter when
estimating CES functions. Any unit error of measurement can be captured by these two parameters
while allowing researchers to get unbiased estimation results of other parameters.

KEYWORDS
Constant elasticity of
substitution; CES function;
unit error; non-linear least
squares

JEL CLASSIFICATION
C13; C20; C15; C51

I. Introduction

Direct estimation of nonlinear constant elasticity
of substitution (CES) function is gaining
increasing popularities in recent years. From
theoretical point of view, direct estimation can
avoid price distortion problems (Papageorgiou,
Saam and Schulte 2017) and facilitate to identify
biased technological changes (Klump, McAdam,
and Willman 2007a, 2007b). Due to the nonli-
nearity of CES function, key parameters in CES
function are no longer ‘deep’ parameters in that
they depend on units of measurement of inputs
(Temple 2012). However, effects of unit errors
on estimation results have been seldom dis-
cussed in existing literature, and currently
there exists no state-of-the-art approaches to
solve this problem.

In this article, we investigate the unit error pro-
blem in estimating CES functions in Section 2 and
3. Section 4 provides the solution to overcome this
problem and discussions of potential advantages of
the solution. Section 5 is the conclusion.

II. Basic model

The basic CES function (Arrow et al. 1961)
allowing biased technological changes (Antràs
2004) is written as:

Yt ¼ α AtX1;t
� ��ρ þ 1� αð Þ BtX2;t

� ��ρ� ��λ=ρ
(1)

where subscript t denotes time. Y is output
variable, X1 and X2 are input variables. At and
Bt are biased technological change parameters of
X1 and X2. α is the distribution parameter, λ is
the scale parameter and ρ is the substitution
parameter. The elasticity of substitution between
two inputs is defined as σ ¼ 1= 1þ ρð Þ.

Instead of estimating formula (1) directly, incor-
porating optimization conditions into formula (1)
can make the estimation results more consistent to
real data. The objective function faced by the repre-
sentative firm in period t is:

max
X1;t ;X2;t

α AtX1;t
� ��ρ þ 1� αð Þ BtX2;t

� ��ρ� ��λ=ρ

s:t: p1;tX1;t þ p2;tX2;t ¼ Mt

(2)

where p1;t and p2;t are prices of two inputs,Mt is the
cost budget. Combining two first-order conditions
@,=@X1 ¼ 0 and @,=@X2 ¼ 0, we solve for α as:

α ¼ πt AtX1;t
� �ρ

πt AtX1;t
� �ρ þ 1� πtð Þ BtX2;t

� �ρ (3)

where πt ¼ p1;tX1;t
�

p1;tX1;t þ p2;tX2;t
� �

. Replacing
formula (3) into formula (1) gives:

Yt ¼ πt AtX1;t
� �ρ þ 1� πtð Þ BtX2;t

� �ρ� �λ=ρ
(4)
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In the new representation of CES function
described in formula (4) the distribution para-
meter is dropped and is replaced by cost share
of input X1 in period t. Thus, the first-order
conditions are embedded in the new CES func-
tion and it can be easily shown that estimating
formula (4) is equivalent to the supply side
system approach first proposed by Klump,
McAdam and Willman (2007a).

III. Effects of unit errors on estimation results

In formula (4) four parameters to be estimated actu-
ally depend on the unit of measurements of input
variables. To see this, we assume formula (4) is the
true underlying CES function, but q1X1;t and q2X2;t

are instead used to estimate it with q1; q2 2 0;þ1ð Þ
and q1=q2 ¼ q. Thus, q is an exogenous parameter
which measures the degree of relative unit error.
Biased technological changes are commonly
assumed to grow at a constant rate, so At ¼ A0eμ1t

and Bt ¼ B0eμ2t. Here, we first set A0 ¼ B0 ¼ 1 for
simplicity and discuss them later. Then the CES
function to be estimated becomes:

Y ¼ πt q1e
μ1tX1;t

� �ρ þ 1� πtð Þ q2e
μ2tX2;t

� �ρ� �λ=ρ
¼ η πt qeμ1tX1;t

� �ρ þ 1� πtð Þ eμ2tX2;t
� �ρ� �λ=ρ ð5Þ

where η ¼ qλ2 which means unit error of measure-
ment of X2 is absorbed by η. Then, the NLS estima-
tion is to minimize the sum of squared residuals
(SSR) as follows:

SSR ¼
XT
t¼1

Yt � η πt qeμ1tX1;t
� �ρ þ 1� πtð Þ eμ2tX2;t

� �ρ� �λ=ρn o2
(6)

where subscript t denotes observation in period t
and total period is T. It is clearly seen that the

estimation results are highly dependent on q. To
see this, we conduct six Monte-Carlo simulations
in order to investigate the effects of different unit of
measurements. In all six cases, we assume X2 is
correctly measured and X1 is incorrectly measured
from 100 times smaller to 100 times larger than
true value, thus 0:01 � q � 100. The true data gen-
erating process (DGP) follows formula (4) with an
additive error term, parameters and data used in six
simulations are shown in Table 1.

The NLS estimating procedure follows
Henningsen and Henningsen (2012), so rounding
errors that will occur when ρ approaches zero can
be avoided. Besides, the Trust Region algorithm are
used to avoid the drawbacks of Levenberg–
Marquardt (LM) algorithm used in Henningsen,
Henningsen and van der Werf (2018) that it may
fail to convergent when starting values are too far
from the global optimum. Simulation results are illu-
strated in Figure 1.

From Figure 1, we can see that if X1 is correctly
measured, i.e. q ¼ 1, then expected value of the sub-
stitution parameter ρ̂ will be close to its true value.
However, if degree of unit error increases, i.e. q ! 0
or q ! þ1, expected values of ρ̂ will approach to
zero or reach extreme values. Meanwhile, the corre-
sponding goodness of fit, R2, also decreases dramati-
cally. As a result, if researchers use wrong unit of
measurements of inputs, they will tend to either
obtain Cobb–Douglas (CD) functions or unreason-
able values. This will raise great concerns that empiri-
cal works in estimating CES functions may give
biased estimation results if unit of measurements
are not carefully treated. This result is similar to the
statements in Antràs (2004) that if biased technolo-
gical changes are omitted in CES function, then
estimation results will necessarily be a CD function.

Table 1. Settings of Monte-Carlo simulations.
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

ρ −0.6 −0.6 −0.6 1.0 1.0 1.0
λ 1.05 1.05 1.05 0.98 0.98 0.98
μ1 0.002 0.002 n.a. 0.003 0.003 n.a.
μ2 0.004 n.a. 0.004 0.001 n.a. 0.001
π πt ¼ 0:15þ 0:5πt�1 þ N 0; 0:012

� �
πt ¼ 0:35þ 0:5πt�1 þ N 0; 0:012

� �
X1 N 1; 0:12

� �
N 1; 0:12
� �

X2 N 1; 0:12
� �

N 1; 0:12
� �

Error N 0; 0:012
� �

N 0; 0:012
� �

Draw 1000 1000
T 200 200

N φ; σ2ð Þ is the normal distribution with mean φ and standard deviation σ.
‘n.a.’ means no biased technological changes.
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Figure 1. Estimated parameters with different unit of measurements.

APPLIED ECONOMICS 3



For those technical parameters μ and scale para-
meters λ, estimation results are also greatly affected
by unit errors whenever we assume both inputs or
only one of them have biased technological
changes. As a result, all remaining variations are
captured by the efficiency parameter η. In Figure 2,
we can see that expected values of η̂ deviate in
a wide range as q deviates from unity.

IV. Discussions

Modified specifications of CES function

Now come back to formula (5) if we add back A0

and B0 then formula (5) becomes:

Y ¼ πt q1A0e
μ1tX1;t

� �ρ þ 1� πtð Þ q2B0e
μ2tX2;t

� �ρ� �λ=ρ
¼ γ πt τeμ1tX1;t

� �ρ þ 1� πtð Þ eμ2tX2;t
� �ρ� �λ=ρ ð7Þ

where γ ¼ q2B0ð Þλ and τ ¼ qA0=B0. Constant
components of biased technological changes can
be absorbed with γ and τ, so it is no longer needed
to set them explicitly in the CES functions. By
adding an overall efficiency parameter γ and
a unit correction parameter τ, unit errors can be
well captured by these two parameters whilst keep
other parameters unchanged. Table 2 summarizes

specifications of CES functions under different
situations. These specifications are to some extent
explicitly or inexplicitly applied in some existing
literature (Antràs 2004; van der Werf, 2008). For
the empirical literature which does not apply these
specifications, it is more likely to find estimation
results with extreme values (Prywes 1986; Kemfert
1998; Koesler and Schymura 2015).

Challenges in estimating CES functions

Unit errors may sometimes be quite large. For
example, if one changes the unit from thousand
to million of one input while keep another
input’s unit unchanged, then τ is expected to
become 1000 times larger. New challenges may
be raised in applying NLS method in that the
start values will be too far from the global opti-
mum which leads to failure in optimization pro-
cedure. This problem is sometimes more severe
than expected in that even Trust Region algo-
rithm is not able to find the global optimum.
To overcome this problem, a thorough grid
search for η and τ is needed to find the most
potential start values within a wide range of
parameter spaces. Although a thorough grid
search will be computation intensive and time

Figure 2. Estimated efficiency parameters with different unit of measurements.

Table 2. Parameters and data used in Monte-Carlo simulations.
Biased technological change Specification of CES function Parameters to be estimated

X1, X2 Y ¼ γ πt τeμ1tX1;t
� �ρ þ 1� πtð Þ eμ2tX2;t

� �ρ� �λ=ρ γ λ μ1 μ2 τ ρ

X1 Y ¼ γ πt τeμtX1;t
� �ρ þ 1� πtð ÞXρ2;t

h iλ=ρ γ λ μ τ ρ

X2 Y ¼ γ πt τX1;t
� �ρ þ 1� πtð Þ eμtX2;t

� �ρ� �λ=ρ γ λ μ τ ρ

None
Y ¼ γ πt τX1;t

� �ρ þ 1� πtð ÞXρ2;t
h iλ=ρ γ λ τ ρ
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consuming, it is worthwhile to obtain reliable
estimation results by doing so. We demonstrate
the above statements by conducting Monte-Carlo
simulations with settings in case 1 and case 4, the
only exception is that an additional parameter τ
is added in the estimation procedure. Simulation
results are shown in Tables 3 and 4.

Discussion of normalization method

Among existing literature, Leon-Ledesma and
Satchi (2011) and Cantore and Levine (2012) sug-
gest to normalize data to the baseline point to
overcome unit error problems. Normalized CES
function is first formally proposed by Klump and
Preissler (2000) which can be written as follows:

Yt

Y0
¼ π0

AtX1;t

X1;0

� ��ρ

þ 1� π0ð Þ BtX2;t

X2;0

� ��ρ	 
�λ=ρ

(8)

where subscript zero denotes benchmark value, and
point Y0;X1;0;X2;0; π0

� �
is called the normalization

point. By viewing input variables as indices, we can
make the CES function be invariant to changes of

units of measurement (Klump, McAdam, and
Willman 2012). However, Temple (2012) points
out that the function surface of formula (8) is very
sensitive to the choice of normalization point and
the normalization method is not enough to make
parameters ‘deep’. In empirical studies, the normal-
ization point may be chosen arbitrarily since the true
normalization point is unknown to researchers. For
example, normalization point is either chosen as the
baseline year (Klump, McAdam, and Willman
2007b; León-Ledesma, McAdam, and Willman
2015) or as the average of sample data (Klump,
McAdam, and Willman 2007a, 2012). Different
choices of normalization point will lead to different
estimation results which may reduce the reliabilities
of results obtained by using normalization method.

Advantages of the new specifications in estimating
nested CES function

Nested CES function is widely used in many
economic fields such as climate change, inter-
national trade and so on. It is also the very
basic functional form used in many large-scale

Table 3. Monte-Carlo simulation with parameters in case 1.
R2 τ γ ρ μ1 μ2 λ

True value - 1=q1 1.000 −0.600 0.002 0.004 1.050
q1 = 100, q2 = 1 0.989 (0.002) 0.010 (0.001) 1.001 (0.024) −0.590 (0.217) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 10, q2 = 1 0.989 (0.002) 0.100 (0.007) 1.001 (0.023) −0.597 (0.224) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 1, q2 = 1 0.989 (0.002) 1.001 (0.074) 1.001 (0.024) −0.589 (0.216) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 0.1, q2 = 1 0.989 (0.002) 10.007 (0.744) 1.001 (0.024) −0.589 (0.218) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 0.01, q2 = 1 0.989 (0.002) 100.179 (7.266) 1.001 (0.023) −0.591 (0.217) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
True value - q2 q�λ

2 −0.600 0.002 0.004 1.050
q1 = 1, q2 = 100 0.988 (0.012) 99.992 (7.116) 0.008 (0.000) −0.610 (0.203) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 1, q2 = 10 0.989 (0.005) 9.996 (0.717) 0.089 (0.003) −0.600 (0.231) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 1, q2 = 1 0.989 (0.002) 0.999 (0.073) 1.002 (0.023) −0.609 (0.203) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 1, q2 = 0.1 0.979 (0.027) 0.101 (0.006) 11.236 (0.386) −0.608 (0.215) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)
q1 = 1, q2 = 0.01 0.979 (0.027) 0.010 (0.001) 126.189 (6.569) −0.610 (0.203) 0.002 (0.002) 0.004 (0.001) 1.050 (0.009)

Standard deviations are provided in parentheses.

Table 4. Monte-Carlo simulation with parameters in case 4.
R2 τ γ ρ μ1 μ2 λ

True value - 1=q1 1.000 1.000 0.003 0.001 0.980
q1 = 100, q2 = 1 0.962 (0.075) 0.010 (0.000) 1.000 (0.036) 0.998 (0.253) 0.003 (0.001) 0.001 (0.002) 0.980(0.010)
q1 = 10, q2 = 1 0.962 (0.075) 0.101 (0.004) 1.000 (0.036) 0.998 (0.254) 0.003 (0.001) 0.001 (0.002) 0.980 (0.010)
q1 = 1, q2 = 1 0.986 (0.002) 1.002 (0.052) 1.000 (0.036) 0.998 (0.254) 0.003 (0.001) 0.001 (0.002) 0.980 (0.010)
q1 = 0.1, q2 = 1 0.986 (0.002) 10.017(0.519) 1.000 (0.036) 0.998 (0.254) 0.003 (0.001) 0.001 (0.002) 0.980 (0.010)
q1 = 0.01, q2 = 1 0.986 (0.002) 99.746 (4.836) 1.003 (0.033) 1.000 (0.253) 0.003 (0.001) 0.001 (0.002) 0.980 (0.010)
True value - q2 q�λ

2 1.000 0.003 0.001 0.980
q1 = 1, q2 = 100 0.964 (0.065) 101.400 (4.348) 0.011 (0.001) 1.006 (0.241) 0.003 (0.001) 0.001 (0.002) 0.981 (0.010)
q1 = 1, q2 = 10 0.964 (0.065) 10.142 (0.434) 0.104 (0.004) 1.006 (0.241) 0.003 (0.001) 0.001 (0.002) 0.981 (0.010)
q1 = 1, q2 = 1 0.986 (0.002) 1.006 (0.053) 0.998 (0.036) 1.006 (0.241) 0.003 (0.001) 0.001 (0.002) 0.981 (0.010)
q1 = 1, q2 = 0.1 0.964 (0.065) 0.101 (0.004) 9.543 (0.428) 1.006 (0.241) 0.003 (0.001) 0.001 (0.002) 0.981 (0.010)
q1 = 1, q2 = 0.01 0.964 (0.065) 0.010 (0.000) 91.320 (5.586) 1.009 (0.240) 0.003 (0.001) 0.001 (0.002) 0.981 (0.010)

Standard deviations are provided in parentheses.
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simulation models. Consider the following
modified two-level nested CES function:

Yt ¼ γ1 π1;t τ1AtX1;t
� �ρ1 þ 1� π1;t

� �
Zρ1
t

� �λ=ρ1
Zt ¼ π2;t τ2BtX2;t

� �ρ2 þ 1� π2;t
� �

CtX3;t
� �ρ2� �1=ρ2

(9)

where At, Bt and Ct are biased technological change
ofX1,X2 andX3. If units ofX1 andX2 are incorrectly
measured, then these errors will be captured by τ2
and an omitted efficiency parameter γ2 related with
Z. Since γ2 is omitted in formula (9) this means Z is
also incorrectly measured. However, this error,
together with unit error of X1, can be captured by
τ1 and γ1. As a result, whenever unit errors happen
to any input variable in a nested CES function, these
errors can be successfully captured by γ and τ that
allow remaining substitution parameter ρ and scale
parameter λ be deep parameters.

V. Conclusion

We have demonstrated that using incorrect units of
measurement will lead to significant biases in estimat-
ing key parameters of CES functions. Researchers will
obtain either CD functions or extreme estimation
results if these errors are neglected in practice. To
overcome this problem, we suggest specify the CES
function by adding an overall efficiency parameter
and a unit correction parameter to the CES function.
By doing so, unit errors can be captured by these two
new parameters through well conducted estimation
procedure. When compared to normalized CES
method, the new specification does not impose
assumptions of benchmark points which may be
chosen arbitrarily in empirical studies. Furthermore,
the new specification also has advantages in estimat-
ing nested CES function since all unit errors can be
absorbed by additional parameters.
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